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We calculate the conduction electron density profile for a liquid metal in 
contact with a layer of  water molecules, representing the electrolyte phase of 
an electrochemical interface. The self-consistent Kohn-Sham equations are 
solved in the absence, and presence, of the electrolyte phase. Results are 
compared to those from variational calculations, showing that the latter are 
not sufficiently accurate for this problem. In the potential representing the 
interaction of the conduction electrons with the water molecules, the contribu- 
tion of the exchange-correlation potential is extremely important, as well as 
the constraint of  orthogonality to the closed shells of  the water, represented 
by a repulsive pseudopotential. Different exchange-correlation potentials are 
investigated. Results are quite sensitive to the choice made and to the rep- 
resentation of  the pseudopotential. The additional information needed to 
place these calculations on a firmer basis is indicated. 
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1. Introduction 

The typical electrochemical interface is the region between a liquid metal (elec- 
tronic conductor) and an electrolyte (ionic conductor). Although such systems 
have been much studied, experimentally and theoretically, for a century, it is 
only recently that the role of the metal phase has been considered in any detail. 
Experimentally, one cannot separate the contributions of metal and electrolyte 
phases to the properties of the interface, but it is evident that the electrical 
potential at any point in the interface is a sum of metal and electrolyte contribu- 
tions. We are interested in the potential difference across the interface and how 
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it is changed by the presence of the electrolyte phase and by charging. (We are 
concerned with the polarizable interface, i.e. one for which the electrical potential 
difference between the phases can be changed without producing a continuous 
current [1].) One knows from work functions that, because of  the separation of 
charge between conduction electrons and ion cores, there is a surface potential 
of several volts [2] at a metal surface, so a potential drop of this size with origin 
in the metal must also exist at the metal-electrolyte interface. 

Recent calculations [3-5] have modeled the effect of an aqueous electrolyte phase 
on the conduction electrons by an effective potential, and obtained the electron 
density profile by variational calculations. Two aspects of this procedure are 
questionable and are examined in the present work: the approximtions involved 
in the variational procedure, and the choice of  effective potential. We do not 
consider whether the effect of the electrolyte phase can be represented at all by 
a local potential, although this assumption also could be called into question. 

With respect to the variational method, there are two issues: the justification of 
the variational principle used and the adequacy of the variational trial function. 
Assuming that it is indeed sufficient to treat the conduction electrons in the field 
of the metal ion cores (plus eventually the field of the electrolyte ions and 
molecules), one should obtain the conduction electron density p(z) from the 
electronic wave functions. I f  each of the wave functions up to the Fermi energy 
eF is filled with two electrons, 

p(z) =2  de d2Kl~b~,K[ 2 (1) 

where ~,K is determined from a one-electron Schr6dinger equation, involving 
some sort of  self-consistent field potential. To obtain p(z) variationally, and not 
deal with the ~b~,K, one must express the electronic energy as a functional of the 
electron density alone. Some contributions to the total energy can often be well 
approximated by local functionals of  p, but not the kinetic energy. The 
inadequacies of substitution of the Thomas-Fermi density functional [6] 

E~V~ (3h2/10me)(3r f p5/3 de 

for the kinetic energy in terms of the one-electron wave functions 

I? ;  ; E~X=-(h2/2me) de d2K d~O*K(r)V2~,K(r) 

are well-documented [7], and there have been many attempts at improving on 
this form. Nevertheless, Smith [8] showed that for solid metal surface problems, 
variational calculations based on E~ F gave density profiles and potential 
differences close to those obtained from calculations using Eft .  A second 
problem is the choice of  trial function, which contains one or more parameters 
whose values are varied to minimize the electronic energy. A simple one-parameter 
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form such as 

p=pe(1 --�89 e~) ,  z < O  
/ I  - - a z x  = p e r l e  ), z>_0 (2) 

may be adequate in some cases, but not if the Friedel or other oscillations are 
important features of the true electron density. One does not know in advance 
how complicated a functional form to use for p(z) in the presence of the electrolyte 
environment. 

Our recent calculations [9] have generated one-electron wavefunctions by solving 
a Schr/Sdinger equation. If p(z) is constructed from the qJ~,K, which in turn are 
obtained by integrating a differential equation, the shape of p (z) will automatically 
be correctly represented. The equations and our method of solution are presented 
in Sect. 2. Results are compared with variation for Hg and Ga, two metals of 
primary interest in electrochemistry. 

The representation of the effect of the electrolyte phase is explored in Sect. 3. 
We are calculating the potential difference X = V(inside) - V(outside) due to the 
distribution of metal ions and electrons. Since X is known to be positive [10] 
and several volts in size, the effect of the electrolyte on X could be large. Workers 
on the problem to date [3-5] have represented the electrolyte as a region of 
dielectric constant greater than unity, a repulsion due to closed-shell species, or 
both. The dielectric constant corresponds to the electronic polarizability of the 
electrolyte species. Its effect on the electrons is that of an attractive potential, as 
the interelectronic repulsion is screened, which extends the electronic tail toward 
the outside of the metal. The resulting increase in X is small compared to the 
decrease in X due directly to the presence of the dielectric (induced dipoles in 
direction opposite to the electric field). The effect of the closed-shell repulsion 
is to push the electronic tail back into the metal, which also decreases X. Values 
of several tenths of volts (negative), have been calculated for the change 6X, 
taking enhanced dielectric constant, repulsion, or both into account. This accords 
with a value for 6X deduced [ 11 ] from experimental data with certain assumptions. 
(Direct measurement of ~X, or any quantity involving only the metal part of the 
interface, is believed to be impossible.) 

The potentials used for the electrolyte involve arbitrary choices of parameters, 
and the repulsion is not carefully justified in terms of the interactions an electron 
encounters at a layer of water molecules. If  the electron does not distort the 
charge distribution of the water molecules, as energetic considerations suggest, 
the latter is a source of electrostatic potential. Since the molecule is neutral, its 
electrostatic potential is zero at infinity and positive everywhere else (attractive 
interaction for the electron). The exchange and correlation interactions between 
the metal's conduction electrons and the electrons of the molecule are inherently 
attractive as well, as they represent a decrease in the electron-electron repulsion. 
The polarization of the molecular electronic cloud by the conduction electrons 
may be represented by a "polarization potential" which is also attractive. (Indeed, 
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the dielectric constant region mentioned previously is a crude represent of  this.) 
True molecular potentials are thus wholly attractive. 

To justify inclusion of  a repulsion, one invokes the arguments of pseudopotential 
theory [12]. The requirement of orthogonality to electronic wave functions of  
the electrolyte leads to an increase in kinetic energy for conduction electrons 
penetrating the electron cloud of electrolyte molecules, and the effect of this 
increase can be represented by a repulsive pseudopotential.  In atomic calculations, 
the effect of  the core electrons on the valence electrons can be treated in this 
way [13]. In the present case, the repulsive pseudopotential represents the effect 
of  all the electrons of  the electrolyte molecules, which are closed-shell species. 
Energetically, this is analogous to the atomic case. Since the ionization potential 
of  the water molecule is 12.62 eV, and an electron emitted to the vacuum level 
from bulk water would require additional energy corresponding to the surface 
potential of  water, approximately [14] 0.26 V, the water electrons are 12.9 eV 
below the vacuum level. The electrons of  the metal which overlap the water 
molecules are those near the top of the conduction band, requiring an energy 
equal to the work function (4.50 V for Hg, 4.12 V for Ga) to reach the vacuum, 
so their energies are well above those of the bound electrons of water. For this 
reason, we can neglect distortion of the electronic distribution of  the water 
molecules, and consider them as a source of  potential for the metal electrons. 

Application of the above ideas still requires generation and parameterization of 
a pseudopotential.  As attempt to do this is made in Sect. 3. In this section, we 
also investigate various exchange-correlation potentials, proposed for electron- 
molecule interactions, calculating their effects using the differential equation 
method, on the metal electron distribution and on X. It will be seen that X is 
extremely sensitive to the exchange-correlation potential used. 

2. Self-consistent field equations 

Lang and Kohn [15] developed self-consistent field equations for the electron 
density at the surface of  a solid metal, based on the Hohenberg-Kohn-Sham 
theorem [16], that the ground state energy (and hence, the wavefunction and all 
electronic properties) for a system of interacting electrons in an external potential 
is a functional of the electron density. Let E be the ground state energy of a 
system of  N interacting electrons in some external potential and let p(~) be the 
corresponding electron density. Lang and Kohn [15] consider a system of N 
noninteracting electrons that has the same density, p(~), and electronic kinetic 
energy Ts. They define the exchange-correlation energy as 

Ex~ = E - T~ + f p(~)v(;)  d ; -  E~ (3) 

where Ec is the average Coulomb energy of the electron cloud and v(Y) is the 
external potential. Taking Exc to be a local functional of p, one constructs the 
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effective potential 

~o.= - ~ ( ~ ) + [  p(F')I~- 71-' 
J 

d ~'+ 6E~/6p  (4) 

and considers the one-electron Schr6dinger equation 

(--~v2 + vo~)O(~) = ~q,(~). (5) 

(In this and subsequent equations, we use atomic units, le] = h = 1 ; the atomic 
unit of energy is 27.21 eV or 2 Ry.) Thus, from an initial guess for the conduction 
electron density, the electrostatic potential Vc and the exchange-correlation 
potential Vxc=SExc/6p is calculated. Then one solves the one-electron 
Schr6dinger equation 

-!V2'r'2 V'~,K + ( V x c - V -  Vc)~b~,K = e~,K (6) 

with appropriate boundary conditions for all eigenenergies up to the Fermi energy 
er (K refers to quantum numbers other than e require d to specify the wavefunc-  
tions). A new electron density is formed from the eigenfunctions according to 
(1) and the procedure is repeated until the electron density generated from (6) 
and (1) is the same as that used to construct Vxc. 

It does not seem possible to find self-consistent solutions to the equations by 
direct iteration of the equations (1) and (6). As our procedure is different from 
that indicated by Lang and Kohn [15], we describe it here. In our application, 
p and the potential depend on z alone. The eigenfunctions are of the form 
f ( z )  e ig'g, where S is a unit vector perpendicular to the z direction and the 
two-dimensional vec to r s / (  are chosen to obey periodic boundary conditions, so 
the degeneracy from the integration over K in (1) is proportional to e ~ -  e 2. Each 
eigenfunction, and hence the electron density and potential, is defined by its 
values at N points zi, i = 1 . . . .  , N. We choose M points ~k covering the same 
range of z as the zl and a reference density p~f (sometimes of a simple form like 
(2), sometimes a density profile from a previous calculation). With each ~k is 
associated a weight Wk from which we generate a Lagrangian interpolation 
polynomial w(z) which, multiplied by p~f, gives an input density pi(z), used to 
construct Vc(zi) and V,~(z,) for i = 1 , . . . ,  N. We fix P(Z~+l) equal to p~, the bulk 
electron density, and assume the electron density equals p~ for all z <- ~+a .  For 
each input electron density pi(z~), i = 1 , . . . ,  N, we calculate the position of the 
ion profile (a step, in the present calculations) required to assure electro-neutrality. 
This is then used in the calculation of Vc, and also in locating the position of 
the potential representing the electrolyte environment (see below). Solving the 
SchrSdinger equation (6) by a tabular difference method [17] and using (1) we 
obtain an output electron density po(Z~), i = 1 , . . . ,  N, and construct the mean- 
square relative deviation D where 

,~1 NL p , ( z , )  J " 
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The M weights W~ are varied to minimize D, the search for optimum values 
being carried out by a simplex algorithm [18] in an ( M +  1)-coordinate space. 
The search is terminated when D gets below 1%. We have verified that our 
method yields the same density profiles for the cases treated by Lang and Kohn 
in their original work [15]. 

There is an important difference between our calculations and those of  Lang and 
Kohn, because we deal with a liquid metal. For a solid metal, the ionic contribution 
to the potential is clearly not a function of z alone, but it is convenient to first 
calculate the electron density profile for a one-dimensional ion density profile 
(jellium), by the theory discussed above, and then obtain the effect of substituting 
the ionic lattice (using available structural information) by a perturbation pro- 
cedure [7, 10]. For a liquid metal, there is an average ion density profile instead 
of a set of ion positions. The average electron density, in principle, ought to be 
calculated by averaging the electron density for each ionic configuration; our 
theory assumes it can be obtained from a single calculation using the average 
ion density profile, a function o f z  alone. No perturbative insertion of  ion positions 
is involved. For the same reason, the potential includes a pseudopotential for 
the metal ion cores, averaged over the ion density profile. The potential in the 
SchrSdinger equation being a function of  z alone, our problem is truly one- 
dimensional. 

Some information is available about the ion density profile for a liquid metal, 
experimental [19] and theoretical [20]. Whether it is monotonic or oscillatory is 
not settled. The present calculations use a step function. Other work [9, 21] 
investigates the effect of  using profiles which are less abrupt or contain oscillations. 

We are interested in ascertaining the effect on p(z) and the resultant X of using 
the full differential equation procedure instead of the variational procedure used 
[3] formerly. The previous calculations employed the variational functions of 
Eq. (2) and a two-parameter (but still monotonic) modification. 

e o~z- 1+(o~//3)'~ p=o (1 z < x  

e-~Z-l+(13/,~) 
p--- pe Z >>--X (7) 

1 + ( /3 /a)  ' 

where x = a -1 -/3-1.  This function is continuous and with continuous derivative 
at x, and satisfies the normalization condition 

f~o ( p - p x )  dz=O 

if PN is a step function at 0 (or a function of  type of Eq. (2)). The ion charge 
density PN is the ion density profile multiplied by the charge per ion (2 for Hg, 
3 for Ga). The parameters for the ionic pseudopotentials for the metals are those 
used previously [3]. Similarly, the electrolyte is modeled in the same way as 
previously, as a region where the dielectric constant differs from unity and /o r  a 
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Figure 1. Comparison of self-consistently calculated 
density profile (solid line) with variational density 
profile (broken line) for liquid Ga surface: P/Pbu~k 
plotted against distance from ion (step) profile in a o 
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delta-function repulsion. The positions of  these potentials depend on the radius 
of the water molecule and the crystallographic radii of  the metal ions. 

Fig. 1 shows, for Ga  in the absence of electrolyte, electron density profiles as 
calculated from the Lang-Kohn  equations and as obtained variationally. The 
deviation shows up in calculated values of  X, given by 

X=-4rr I_~o dz I~oodz'[p+(z')-p(z') ] (8) 

where p+ is the ionic charge distribution. The work function for a metal is 
computed as X-/ze,  where /xe is the chemical potential of the electrons within 
the metal. 

From the bare Ga  surface, we calculate X = 9.48 V from solution of the Lang-Kohn  
equations, much below the result obtained from variation, 10.51 V. For Hg, the 
corresponding results are 5.2 V and 5.37 V, quite close. For the higher electron 
density metal, the variational function is thus less adequate. In calculating the 
chemical potential of  the electrons, we note that the variational and differential- 
equation calculations differ only in the treatment of the kinetic energy. However, 
in the latter we calculate the electronic kinetic energy in bulk metal, which is for 
a uniform electron gas, so we get the Thomas-Fermi  expression 

d [  
do e 3(37r2)2/3P 5e/3] =4.785p2e/3 

as in the variational theorY. The calculated work functions for Hg and Ga are 
3.38 V and 3.12 V. Trasatti [22] has suggested, from various experimental data, 
work functions of 4.50 V and 4.25 V for liquid Hg and Ga. Compared  to the 
results of  the variational calculations, 3.51 V and 4.25 V, the new values o f x  have 
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restored the correct relative values, although both are about 1 V too low. Among 
other things, a changed ion density profile could change X values. 

The effect of  a changed dielectric constant, representing the polarizable electrons 
of  the electrolyte, can be fairly well calculated by assuming the electron density 
in the presence of the dielectric is essentially that of  the bare metal. Then the 
change in X, using Eq. (8) and the overall electroneutrality, is 

Ax~=-4~ I~o dz'(e~z,)-l) Iz~, dz"P(Z"). 

The dielectric constant e(z) differs from unity for z _  Re, the crystallographic 
radius of the metal ion. Although a z-dependent e was used in our previous 
work, the fall-off of p for z > 0  means the value of  e just beyond Rc (e =6  was 
used) is most important, and we approximate AX~ as 

-4zr  dz'( 1 - 1 )  dz"p(z") = -~[ V(Rc) - V(ce)]. (9) 
R c z I 

Changes in this quantity thus measure changes in the tail of  the electron density 
profile. The Eq. (9) gives -0.27 V and -1.53 V for the variational profiles for Hg 
and Ga ( -0 .24 V and -1.01 V from a precise calculation) and -0.32 V and -1.38 V 
using the profiles from the self-consistent theory. Again, the variational profile 
is adequate for Hg but not for Ga. (The same is true for the approximation using 
the bare-surface electron density.) However, errors in AX are less than in X itself. 

The same conclusion follows from our calculations on the effect of  a repulsive 
potential 

vr = ; t ~ ( z -  d~) (10) 

representing the effect of  the closed-shell cores of  the water molecules. We take 
h = 0.15 a.u. or 4.1 eV, and dr equal to the metal ion radius plus the radius of a 
water molecule, 0.15 nm or 2.83 ao. The electron density profile is calculated with 
Vr added to the external potential, and the value of X compared with that in the 
absence of  Vr (bare metal). We find decreases in X of  0.21 V and 0.25 V for Hg 
and Ga, respectively. Variational calculations gave decreases of 0.13 V and 0.55 V. 
Here, it is just the distortion in the shape of  p(z) which is responsible for the 
change in X. The variational functions of  the form (7) may become quite 
inadequate for a potential which differs markedly from that of jellium. Since 
other workers [4] have used a step-function to represent the closed-shell repulsion, 
we also considered 

v'r= x'O(z-cl'r) 

with h '=0 .1  a.u. and d'r= Re+0.15 nm. For Ga, a decrease in X of 0.24V was 
obtained. Finally, we considered the effect of  the dielectric constant in the presence 
of  the g-function barrier by calculating AXe according to (9) using the profile 
obtained in the presence of  the barrier. We find -0.23 V for Hg and -1.29 V for 
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Ga. The barrier pushes the electron density profile back towards the metal, 
decreasing its values for positive z and hence making AX~ smaller in magnitude. 

Of course none of the barrier calculations are meaningful without a way to choose 
a value for the parameter A or A'. They show only that, with reasonable values 
for these parameters, the decrease in X is of a reasonable size. (There is the added 
satisfaction that our method of solving the self-consistent equations continues to 
be effective with repulsive potentials present.) The construction of the potential 
representing the electrolyte is explored in the next section, to ascertain which 
features are important and to which features results (e.g. X) are insensitive. 

3. Electrolyte potentials 

We need to construct the potential due to a layer of water molecules, as seen by 
a conduction electron of the metal. The distortion of the charge distribution of 
the water is probably unimportant. The charge distribution and resulting potential 
of a water molecule is quite complicated [23] in form. Further, different orienta- 
tions relative to the metal are undoubtedly present in roughly equal proportions 
[24, 25]. For this reason, we have considered the isoelectronic Ne atom, which 
of course has a spherically symmetric electron density in the ground state. If  the 
interior of  the molecule is most important in the potential, this is a reasonable 
simplification. If details of the electrostatic potential on the periphery are impor- 
tant, it is not. 

Using Clementi's limited-basis Hartree-Fock function [26] for Ne, we calculate 
the total electron density (depending only on distance from the nucleus) and 
hence electrostatic potential Vc from Poisson's equation. The exchange-correla- 
tion potential Vxc in the local approximation is evaluated as d(pexc)/dp with the 
same electron density. Taking exc as the sum of the exchange energy density for 
a uniform electron gas and Wigner's interpolation formula for the correlation 
energy density [27] we obtain 

4 0.458 0.447.8+4rs/3 
Vxc- 3 rs (rs+7.8) 2 (11) 

where 4vrr]p/3 = 1. The resulting Vc and Vxc are plotted in Fig. 2. It is noteworthy 
that the latter is much larger than the former except for r below about 1.8 ao, the 
two becoming equal only near 1 ao. Since centers of the water molecules are 
distant from the metal ion step functions by 4.95 ao for Hg and 4.00 ao for Ga, 
we can anticipate that Vx~ will be more important than Vo The atomic potential 
V(r) = Vxc(r)+ Vc(r) is converted to the z-dependent potential due to a layer of 
"water" molecules according to 

ff f/(z) = dx dy PV(r) = 27rP r dr V(r) (12) 
Z - -  ZO] 

where Zo is the distance of  the water layer from the outermost layer of metal ions 
and P is the number of water molecules per unit area. Since one water [25, 28] 
has a cross-sectional area of  9/~2 or 30 a~, P is taken as 0.031 ao 2. 
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Fig. 2. Coulomb and exchange-correlation poten- 
tials for Ne atom (modeling H20 molecule), in a.u., 
plotted aginst distance from center, in ao. Broken 
line: Hara exchange potential. Dotted line: Hara 
potential with Gomb~is cut-off 

A cut-off in V(r) is introduced to represent the repulsive effect of  the constraint 
of  orthogonality to the inner shells, i.e. V(r)= 0 for r <  ro. Then 

17"(z) =2~rP r dr  V(r), [ z -  Zo]> ro (13a) 
Z -  zol 

l~(z) = 2rrP rdrV(r), IZ-Zo[<-ro (13b) 
ro 

where ro is determined so that there are no atomic bound states orthogonal to 
the filled states, i.e. the lowest eigenvalue of  the modified potential is zero. With 
the WKB formula, this means 

f ~o d r ( - 2  V )  1/2 = ~r/2. (14) 
r0 

We find ro = 2.338 and X = 9.49 V for Hg. 

The exchange potential (11) needs modification. Slater and Wood [29] and 
Truhlar [30] give general discussions of  exchange potentials. The exchange part 
of  the Kohn-Sham potential (11) approaches -0 .59 / r ,  for low densities (rs -~ ee) 
whereas the Slater potential [29], -(3/2)(3p/Tr) 1/3, is -0.916/rs. In fact, the 
potential for the exchange interaction of an electron of momentum k with an 
electron gas is dependent on the value of  k :  

Vxc = - 2  7 +  -70 In - -  (15) 
4r/ ~ JL~'J 

with ~7 = k~ kF, k F the Fermi momentum for the gas. The function of  *7 in brackets 
is 1 for ~7 = 0 and ~ for ~7 = 1 ; averaging over r# produces the Kohn-Sham-Slater  
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potential, appropriate for average exchange for electrons in the atom itself. As 
discussed at the end of Section 1, the electrons in the tail of  the metalconduct ion 
band are of higher energy than the valence electrons. Thus, it is reasonable to 
use the exchange potential for ~7 = 1, i.e. ~ the averaged exchange potential; 
-(30/~_)1/3 is -0.61/rs, the Wigner exchange. Even more appropriate would be 
a higher value of ~7. 

The Hara potential [31], used to treat electron scattering by atoms, is Eq. (15) 
with a recipe for choosing the effective k value. The value of r/is now k'/kF where 

(k') 2 = k~+ k2+2L 

I being the ionization potential of the atom. This takes into account the location 
of the atomic energy levels relative to the zero of electronic kinetic energy. For 
our problem, we apply the idea by noting that, since the ionization potential of 
water is 12.62 eV and the work function of mercury 4.50 V, the effective ionization 
potential for k' is 8.12 V or 0.298 a.u. For each r kF is calculated a s  (3"n'2p) 1/3, 
while k = 0 because the kinetic energy is included in the work function. Thus 

~/2= l+0.597(37rZp) 2/3 

gives the value of ~1 to use in Vxc (above). In Fig. 2, the Hara potential is shown 
as a broken curve. We find ro = 0.884, and X = 7.42 V. The exchange potential 
is apparently too strong in the periphery of the atom. Calculations of low-energy 
electron scattering led workers to the same conclusion [32] and various theories 
attempted to correct the situation. 

Gomb~s [33] suggested that, for low electron densities, the statistical approach 
becomes invalid, and argued that the exchange potential should vanish for electron 
densities less than that corresponding to the boundary density in the Thomas- 
Fermi-Dirac model, [34] Po = 0.0021275 ao 3. Letting x 3 --- Po/P, Gomb~is writes 

( 1-12 l+x'~(3p'~ 1/3 
VxQ=-2 l - x +  2 In ~ ]\---~] , x<-I (16) 

and VxQ = 0 for x---1, thus cutting off the exchange potential. Further, Lindgren 
and Rosen [32] introduced a correction for self-exchange, a factor of (1 -2 /Z)~/3  
where Z is the atomic number of the atom. The ~/-dependent factor of Eq. (15), 
evaluated at ~/= 1, was also put in. Gregory and Fink [32] found that, with the 
three factors, there was great improvement in electron scattering calculations 
(although the value of Po was not crucial), and concluded that the resulting 
potential represented an "accurate approximation to the actual exchange poten- 
tial". Using the self-exchange correction and the Gomb~is cut-off to construct a 
potential, we found ro = 0.925. The effect of the Gombfis cut-off is shown as a 
dotted curve in Fig. 2. The self-consistent calculations led to X = 8.40 V, still 
unreasonably large. 

The above and other calculations show that, when the exchange potential is made 
less negative, the condition (14) leads to a smaller value of to, and a more negative 
limiting value of V from (13a). The compensation keeps X large, and 8X large 
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and positive. I f  8)( itself is only several tenths of a volt (negative) as suggested 
by experiment [11], the effect of the attractive potential must be much less than 
a volt. The problem is that, according to (13a), V takes a constant negative value 
for z between Zo- ro and Zo+ ro. Note that the WKB criterion (14) does not define 
V(r) for r <  ro; the turning point's being at ro for e = 0  means simply that V(r) 
is greater than or equal to zero for r < to. If  it is positive, V will be less negative 
for Z > Zo- ro. 

To simulate this, we take V(z) = 0 for ] z -  z0] < to, which is 0.925 in the Gombfis 
model. The large r cut-off for the exchange potential is 2.640. The electrostatic 
potential being small here, we take V(r)= 0 for r >  2.640; V(z )=  0 for [z-Zo[ > 
2.640, and l~(z) = 0 for [z - Zol < 0.925. Without this last modification, X is 8.40 V; 
with it, X = 5.86 V. Incorporating the Hara modification together with Gomb~s' 
cut-off gives ro = 0.8211, V(r) = 0 for r > 2.668 and X = 5.74 V. We conclude that 
the Gombfis cut-off and the proper  truncation of  V(z) are most important in 
getting a reasonable potential. Of course, the proper  way of obtaining V(z) is 
by a more complete representation of the atomic pseudopotential V(r), for r < ro. 
It should also be noted that none of  these corrections give the correct behavior 
of  the potential at very large distances, where the exchange-correlation interac- 
tions are described by image forces. The role played by this long range behavior 
within the context of  the present problem thus remains a challenge for future study. 

4. Discussion 

Simple reasonable calculations establish that the components of  the metal play 
an important role in the polarizable electrochemical interface, although their 

. . . .  ! . 

contribution is usually ignored m elaborating models for, e.g., electrical properties. 
Reliable quantitative calculations of  the metal contribution are more difficult to 
achieve. We have tried to indicate the problems that arise and how some of  them 
may be dealt with. The property considered here is X; its variation with electrode 
charge is a contribution to the measurable interracial capacitance. 

We have a procedure for generating the distribution of the conduction electrons 
at a liquid metal surface, given the profile of  the ions and the ion-electron 
interaction. We have used a step function ion profile here, but the calculations 
can be performed [21] given any profile, and it is likely that new theories for the 
ionic interactions at a metal surface [35] will be generating such profiles. Similarly, 
a better representation for the ion-electron interaction may he developed. 

For a reliable calculation of X in the presence of  the electrolyte phase, the 
potential V(z) must be given accurately. If  no way of  obtaining V(z) directly is 
available, it must be generated by superposition of  single-molecule potentials, 
V(r) [36]. One parameter whose effect we have not investigated is the distance 
Zo, the position of  the first layer of  electrolyte molecules from the metal. Its 
variation with charge can have a major effect [37] on capacitance. The value of  
z0 should be determined by a calculation (minimization of metal-electrolyte 
interaction energy, as is done for chemisorbed layers [38]) rather than chosen 
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as done  here. Finding V(r) if the electrolyte phase  is an aqueous  solution could 
involve use o f  molecular  electron density distributions [23, 26] f rom which elec- 
trostatic and exchange-correlat ion potentials could be computed .  These would  
be rather complicated in form, and would  have to be averaged over molecular  
orientat ions with respect to the interface. It  may  be that  the electrostatic potential  
could be represented by the potential of  a simple multiple momen t  [23]. Vari- 
ational calculations for  the conduct ion  electrons, using such a representat ion o f  
the solvent molecules,  have been performed [37] for the effect o f  the solvent on 
the metal contr ibut ion to the capacitance. 

As for the exchange-correla t ion potential,  it may  be possible to generate it f rom 
the electron density o f  an isoelectronic species, as the calculations o f  Sect. 3 
indicate that  the most  impor tant  effects come f rom the electron density 1-2 ao 
f rom the center. The last form used was the S l a t e r - K o h n - S h a m  potential  (15) 
with the Hara  (effective k) and Gomb~is (Eq. (16)) corrections. As shown in Fig. 
2 (broken cu rve -=Hara  potential,  dot ted line---with Gomb~is cut-off), the 
exchange-correla t ion potential  remains more  important  than the electrostatic 
potential  in the range o f  distance from 1 to 2 a0. The representat ion o f  the effect 
o f  or thogonal i ty  o f  metal electron~ to those o f  the electrolyte molecules (closed- 
shell repulsion) is crucial when 17"(z) is generated f rom the a tomic  V(r). It is not  
sufficient to set V(r) = 0 for r < ro (pseudopotent ia l  o f  Ashcroft  type). 

A great amoun t  o f  experimentat ion is needed.  To save time, many  of  these 
calculations could be done  variationally, to determine gross features and orders 
o f  magnitude.  Variational functions more complex  than Eq. (2) have recently 
been in t roduced for this problem [39]. As the work of  Sect. 2 shows, however,  
quantitative results require the self-consistent L a n g - K o h n  calculations. 
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